Extremal graphs without three-cycles or four-cycles
نویسندگان
چکیده
We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three-cycles nor four-cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200.
منابع مشابه
On list vertex 2-arboricity of toroidal graphs without cycles of specific length
The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph. A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$, one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...
متن کاملExtremal Graph for Intersecting Odd Cycles
An extremal graph for a graph H on n vertices is a graph on n vertices with maximum number of edges that does not contain H as a subgraph. Let Tn,r be the Turán graph, which is the complete r-partite graph on n vertices with part sizes that differ by at most one. The well-known Turán Theorem states that Tn,r is the only extremal graph for complete graph Kr+1. Erdős et al. (1995) determined the ...
متن کاملExtremal Graphs for Blow-Ups of Cycles and Trees
The blow-up of a graph H is the graph obtained from replacing each edge in H by a clique of the same size where the new vertices of the cliques are all different. Erdős et al. and Chen et al. determined the extremal number of blow-ups of stars. Glebov determined the extremal number and found all extremal graphs for blowups of paths. We determine the extremal number and find the extremal graphs ...
متن کاملMaximal and maximum independent sets in graphs with at most r cycles
We find the maximum number of maximal independent sets in two families of graphs: all graphs with n vertices and at most r cycles, and all such graphs that are also connected. In addition, we characterize the extremal graphs. This proves a strengthening of a conjecture of Goh and Koh [3]. We do the same for the maximum number of maximum independent sets, generalizing a theorem of Jou and Chang ...
متن کاملOn the Caccetta-Häggkvist Conjecture with Forbidden Subgraphs
The Caccetta-Häggkvist conjecture made in 1978 asserts that every orgraph on n vertices without oriented cycles of length ≤ l must contain a vertex of outdegree at most n−1 l . It has a rather elaborate set of (conjectured) extremal configurations. In this paper we consider the case l = 3 that received quite a significant attention in the literature. We identify three orgraphs on four vertices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 17 شماره
صفحات -
تاریخ انتشار 1993